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The constant-Mach-number MHD generator 

By D. T. SWIFT-HOOK AND J. K. WRIGHT 
Central Electricity Research Laboratories, Leatherhead, Surrey 

It is shown that the optimum design of duct in a magnetohydrodynamic gene- 
rator is close to the one in which the flow Mach number remains constant. This 
constant-Mach-number generator is analysed in some detail and i t  is shown that 
the optimum Mach number can be defined to within a few percent. For a y of 
1.25, this optimum is near 0-85. For very short ducts, the maximum power 
output is obtained near matched-load conditions but for rather longer ones 
maximum total power output is obtained by working as close to short-circuit 
conditions as is practicable. Against this, the minimum compressor requirements 
are found by working as close to open-circuit conditions as is practicable, and 
so a compromise must be reached for optimum overall generator design as far 
as load conditions are concerned. This will probably give an internal ohmic loss 
in the fluid of about one-third of the total output. Curves are presented which 
enable the optimum Mach number to be determined with greater precision when 
the optimum load conditions have been selected. 

1. Introduction 
During the last two years, a number of papers have been published in which the 

various thermodynamic parameters in an MHD duct have been obtained under 
a variety of simplifying conditions. For example, almost all authors ignore heat 
transfer through the duct walls as well as friction in the duct. In  order to solve 
the equations most authors also make other simplifying assumptions about the 
nature of the flow. Neuringer (1960) solved the MHD equations numerically for 
the case of a duct of constant cross-sectional area and for a gas of constant con- 
ductivity. Coe & Eisen (1960) extended this treatment to the case of a gas with 
variable conductivity. Other workers (Way 1960; Sutton 1959; Huth 1961) 
have obtained solutions for the case where one thermodynamic parameter such 
as pressure, temperature or velocity remains constant down the duct. 

In  this paper we obtain a solution of the flow equations for the constant- 
Mach-number case, and we show that this will give a fair approximation to the 
design required for minimum duct length, provided that not too much total power 
is extracted. It is believed that this solution will be close to the case selected for 
the operation of a practical MHD generator since, for economic reasons, it  is 
desired to extract the MHD power from as short a duct as possible. The heat 
transfer from an MHD generator will clearly depend on the duct length, and also 
one of the major costs in the construction of an MHD duct will be the cost of the 
large magnets necessary to generate large magnetic fields over a considerable 
volume. It was for these reasons that it was decided to choose the criterion of the 
maximum electrical power extraction per unit length. It can also be argued that 
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a similar criterion such as maximum power extraction per unit volume should be 
chosen. This case has been analysed and it can be shown that the results differ 
very little from those for minimum length. 

The MHD generator considered here consists of a stagnation chamber (in 
which hot gas is produced, e.g. by combustion), an expansion nozzle (to accelerate 
the gas), and a duct in which MHD interactionoccurs to generateelectrical power. 
The gas is a t  a sufficiently high temperature to be electrically conducting and 
electrodes are placed in the walls of the duct so that current may flow freely in a 
direction orthogonal to the axis of the duct and to the magnetic field, as in figure 1. 

Load 

Combustion 

a1 

/ M H D  duct 
Magnetic field 

FIGURE 1. MHD duct configuration. 

I n  order to avoid Hall effects, the electrodes are segmented, each pair of 
opposite electrodes being connected through its own load. The currents in the 
gas interact with the magnetic field to cause a retarding force and also travel 
through the electrodes into a load so that electrical power is generated. The 
enthalpy of the gas is thus converted into electrical power. 

Conditions in the stagnation chamber are represented by the subscript 0 and 
at  the entrance to the MHD region by the subscript 1. We assume for simplicity 
that the generator is sufficiently large for the heat transferred through the walls 
and the friction between the gas flow and the duct walls to be ignored. It will 
be shown later how these effects may be includedrelatively simply in the analysis. 
End effects and other wall effects are also neglected. 

In  practical MHD generators the conductivity and hence magnetic Reynolds 
number will be small. The effect of generated currents on the magnetic field 
will therefore be ignored and the magnetic field taken to be constant. The flow 
equations may be written: 

force per unit volume 

power per unit volume 
pv(dv/dx) + (dp/dx) + J B  = 0; 

pvd(cpT+$v2)/dx+ J E  = 0; 

mass flow rate pvA = const.; 

equation of state P = p c p T ( 7 -  1)/7; (4) 

Mach number M 2  = v 2 / ( y -  1) c,T; (5) 

modified Ohm’s Law J = ~ ( v B - E ) ;  



The constant-Mach-number MHD generator 99 

here A is the cross-sectional area of the flow, B the magnetic induction, E the 
transverse electric field, J the current density, T the temperature, c, the specific 
heat at constant pressure, p the fluid density, c the electrical conductivity, y the 
ratio of the specific heats,p the pressure, v the velocity in the directionx measured 
along the flow direction, and M the Mach number; the electrical conductivity will 
be assumed to be a function of pressure and temperature alone, although it is 
possible to conceive of situations where the electrical currents lead to an 
elevated electron temperature in the working fluid and the conductivity becomes 
dependent on the current flowing. Hall effects may be ignored because of the 
segmented electrodes. 

2. Efficiency 
The output power per unit length Q is given by 

dQ/dx = JEA 
= - pvAd(c, T + iV2)/dx 
= -pvAd[c,T(1 +?&- 1 )  M2}]/dx 

-pvAd(c,TTol/Tl)/dx 

= - Q1 d(T/Ti)/dx, (6) 

where Q1 = pvAC,To, is the total initial power input, and the subscripts 0 and 
1 have been defined in $1 .  (6) integrates to give 

Q/Qi = (Ti-T)/Ti, 

so that 7 = Q/Qi = 1-T/Ti (7 )  
and TITl = 1-7. 

It is interesting to note from (7)  that in the constant-Mach-number case the 
theoretical efficiency is the Carnot efficiency of a heat engine working between 
the initial and final duct temperatures. The stagnation temperature is not in- 
volved. Most of the other thermodynamic parameters can now be determined 
simply in terms of TITl (and hence of the fraction of the power extracted, 7) as 
follows. 

3. Other thermodynamic parameters 
Eliminating J between (1)  and (2) gives 

(d(fg)/dx} + ((1 - K )  d(+v2)ldx} - {(K/P) @P/dX)} = 0, 
where K = (JE) /v (JB)  = E/vB,  

and then substituting for p from (4) and v2 from ( 5 )  gives 

(1/T)dT/dx = (l/PP)dP/dX, 
where p =  { 1 + i ( l - K ) ( y - I ) M 2 } y / ( y - I ) K .  

For constant p ,  (10) can be integrated to give 

where 
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(13) is of the form usually associated with non-isentropic expansion of efficiency 
7‘. In  this case the non-isentropic efficiency is less than K ,  the non-isentropic 
efficiency for the constant velocity case. It should be noted that a sufficient set 
of conditions for constant p is that K ,  M and y should all be constant, and this 
will be assumed in the subsequent analysis. 

From (12), PIP1 = (T/TP = (1  -7Y. (15) 

From (4), P/P l  = (P/Pl)/(T/m 
= (T/T1)P-’ = (1 - 7)fl-1. (16) 

From ( 5 ) ,  

= (TIT,)* = (1 -7)g. (17) 
From (3), 

= (T,/$”l)-(P-$) = (1  - v)-(P-&. (18) 

vl.1 = ( M / W  (T/Tl)* 

4-4 = ( P l / P )  <%I4 

Equations (7) ,  (15)-( 18) are plotted in figure 2 for typical values of y ,  K and M .  
It can be seen that for an efficiency of only 20 % there is a change of about 10 to 1 
in pressure and in cross-sectional area. It therefore seems likely that efficiencies 
will be limited to around that figure by practical considerations. 

4. Friction and heat transfer 
Friction and other forces (a per unit volume) as well as heat and other forms 

of energy transfer from the duct (G per unit volume) may be taken into account 
in a simple way at  this stage by suitably redefining K and B. F simply adds to the 
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magnetic retarding force J B  in equation (1) while G adds to the electrical power 
output in equation (2) and the elimination leading to (8) is therefore still valid 
provided a new value of K is used; thus 

K’ = (JE+P)/v(JB+Q). (19) 

Similarly it will be found in the subsequent analysis that the substitutions 
leading from (2) to (21) are valid provided 

J E  + G = ~w’B’~K’( 1 - K’). (20) 

The analysis may then proceed in terms of the new parameters K‘ and B’ where 
they, rather than K and B, are held constant. It can therefore be seen that 
friction, heat transfer, etc., may all be included in this analysis provided that the 
load and the magnetic field are suitably varied along the duct. 

5. Duct length 

now be found in closed form. By ( 2 )  
The length of duct required to extract a fraction r j  of the total enthalpy can 

where 

Then (16) and (17) with (21) give 

a; (E) 1-3 T 

fl Tl Tl s o  xo 

xlxo x 
d-  = -K(1-K) d-  

= - K (  1 - K )  (x/xo). (23) 

If cr is a known function ofp and T ,  and hence by (12) of T alone, (23) is integrable. 

6. Constant conductivity 
If the gas conductivity is held constant regardless of the state of the gas (e.g. 

by non-thermal ionization) equation (23) can be integrated directly to give an 
analytic expression for the length 

x/xl = 1 - (T/Tl)Pp4 = 1 - (1 -r j )P-*,  

where 

In principle it is possible to extract all the energy in the length x1 to achieve 
100 % efficiency. Unfortunately /3 is normally large, say between 5 and 10, so 
that the last half of the power should be extracted in the last hundredth of the 
duct length, while even to extract half the power, the duct cross-sectional area 
must increase 100-fold along its length. Thus the efficiency is likely to be limited 
by practical considerations. 

XI = xo/K( 1 - K )  (p - 4). (24) 
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7. Variable conductivity 
If the ionization is produced thermally, the conductivity is a complicated 

function of temperature and pressure, even assuming that equilibrium is reached 
almost instantaneously a t  each stage. Provided this function is known, however 
(e.g. from experimental data) equation (23) can be integrated numerically to 
give the length of the generator. For the present purpose, an analytical expres- 
sion is to be preferred and may be obtained by using a simple approximation for 
cr, such as a power law u =  ST)"^-^, 

with s a dimensional constant. Locally, 

y = {d(ln a)/d(ln T)Ip, - z = {d(ln 4/d(lnp)),, 

and over ranges of interest the best values are shown in table 1. 

Conductivity s (2’ in O K ,  p in 
(mho/m) Y /_. atmospheres) r 

10 > r > 0.1 13 0.5 1/2,ooo 
I O O > c r > l  10 0.4 l/Z,OOO 

TABLE 1 

where 

so that 

where 

w = ( P - & ) - ( Y - P Z ) ,  

x / x 2  = l-(T/T1)” (w  * 0 )  

= l - ( l - ? j J ) U ,  

x2 = x O / K ( I  - K )  0. 

( 2 7 )  

Equation (28) is plotted in figure 3. (28) may be rewritten as 

7 = 1 - (1 - x K (  1 - K )  w / x ~ ) ~ ’ ~ .  (30) 

Although some of the separate terms in the expression for w are large, they 
differ in sign and the total value of w may be small positive or negative or even 
zero. For positive values of w all the power can in principle be extracted in a 
finite length x2. For negative values of w ,  x2 is negative and 

7 = 1-{ l+xK(l -K)  \w\/xo}-l”w’, 

so that all the power can in principle be extracted in an infinite length. For the 
singular case in which w vanishes, (26) integrates to give 

7 = 1 - exp { - x K (  1 - K)/xo} ,  

a result which may also be obtained by taking the limit of (30) as w tends to zero. 
Again, all the power can in principle be extracted in an infinite length. 
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FIGTJRE 3. Distance vs fraction of power extracted. 

8. Local optimum conditions 
The power output per unit length at any point along the duct is 

JEA = GV'BZAK( 1 - K), (31)  

which is optimized locally by choosing the load so that K is equal to Q, i.e. by 
matching the load to the internal resistance of the plasma. This is true at all 
points along the duct, and the same condition holds for the optimum power per 
unit volume, JE .  In  a similar way a locally optimum Mach number can be chosen. 
In  terms of the local stagnation conditions 

0- = 0-,(T/TI)" (P/PO)P, (32) 

pipo = ( T / T o ) Y ' ( Y - l ) ,  (33)  

p/po = (T/To)7/(Y-l)-1, (34) 

and = c,(To- T), (35) 

JEA = {~o(2~,T0)3p~AB~/p03(T/T0)~(1-T/T0)~K(1-K), (36)  

where = ( ! / + 1 ) - ( 2 + 1 ) 7 / ( 7 - 1 ) ,  (37)  

or, since T,/T = (1 +Q(y- 1)M2} = (1 + X )  say, (38)  

(39) 

so that the power per unit length is 

JEA CC XB/( 1 + X)h+& 
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for any given stagnation conditions along the duct and for any fixed value of K .  
Straightforward logarithmic differentiation shows that the optimum value of 
X for which the maximum rate of power extraction occurs is 

Xout = */A,  (40) 

which gives an optimum Mach number of 
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FIGURE 4. Variation of optimum Mach number with y. __ , Minimum length; 

-__ , minimum volume. 

For typical values of the parameters (y = 13, z = 4, y = 1.25) the optimum 
Mach number is 0.78, but it is in fact a function of y as shown in figure 4. Thus 
a t  any point along the duct this is the value of Mach number required to give a 
maximum rate of power extraction, independent of the stagnation conditions 
at  that point a t  least to within our approximation for the conductivity and 
independent of the load conditions or K.  

The fact that, the optimum Mach number is the same (for a given y )  a t  all 
points along the duct independent of the locally varying stagnation conditions 
is interesting, since it would appear a t  first sight that a constant Mach number 
should give the minimum duct length for an MHD generator. However, four 



The constant-Mach-number M H D  generator 105 

points must be borne in mind. First, only an approximate expression for the 
conductivity has been used. If a more accurate expression involving exponentials 
is used, it has been found (Ralph 1962) that the locally optimum Mach number 
varies with stagnation temperature as power is extracted along the duct. 
Secondly, to extract a reasonable amount of power, a wide range of variation in 
the physical properties is required. Even to extract 20 yo of the power requires 
a change in the duct area and in the pressure of about 10 to 1 and the quasi-one- 
dimensional approximation may start to break down as well as that for con- 
ductivity. Third, y may well vary appreciably with temperature and pressure 
along the duct, and the analysis then fails. Lastly, the quickest way down a hill 
is not necessarily the line of steepest descent, and to extract a given fraction of 
the total power in the shortest possible overall length, the total length x must be 
minimized rather than the local incremental length a t  each stage. Thus it is not 
strictly true that constant Mach’ number necessarily gives the shortest duct 
design. However, i t  is shown in Appendix 1,  particularly for low efficiencies, 
that the constant-Mach-number generator will not be very different from the 
shortest design. 

9. Optimum load conditions 
The optimum design of an MHD generator will take account of the cost or 

weight of the various items of equipment such as the magnet, the compressors 
and the MHD duct itself, as well as the overall efficiency of the system. As far as 
the constructional costs of the magnet and the MHD duct are concerned it seems 
clear that the optimum design will be close to that for minimum length or volume, 
and this is also true for the loss of efficiency due to heat transfer through the walls 
which may be considerable if cooled walls are used. It is shown in Appendices 1 
and 2 that the value of R which gives an overall minimum length or volume of 
duct is always less than 4 and is in fact mathematically zero for reasonable 
efficiencies, although this is obviously not physically realizable and can only 
be regarded as a limiting case. 

It has already been remarked that the relationship (13) between p and T is 
of the form usually associated with non-isentropic expansion of efficiency 7’ , 
and in normal aerodynamic flows the increase in entropy is caused by friction, 
which converts high-grade (kinetic) energy back into thermal energy. In  our case 
we have assumed that the retarding force is mainly electromagnetic and is 
J B  per unit volume, and high-grade (electrical) energy is converted back into 
thermal energy by straightforward ohmic heating of the fluid. As in the aero- 
dynamic case, this increase in entropy is undesirable since an increased pressure 
drop must be provided which will require larger compressors and will need 
greater compressor driving powers which must be subtracted from the output 
of the generator. For minimum compressor requirements 7’ should be as high 
as possible, and this occurs when K = 1. Again this represents a limit that is not 
physically realizable (although it should be remarked that conventional alter- 
nators or batteries approach this limit very closely, values of K of 0.997 being 
typical). 

It can therefore be seen that the optimum value of K will represent B compro- 
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mise between the requirements of minimum duct size ( K - t  0) and minimum 
compressor capacity (K -+ 1). This compromise cannot be determined with great 
accuracy until the detailed economics of duct and magnetic construction have 
been worked out, and since no duct has yet been built with an interesting life- 
time and no large superconducting magnet (as is usually proposed for large-scale 
generators) has yet been demonstrated, this is not a t  present possible. However, 
such estimates as have been made appear to indicate that a K of a t  least 2 will 
be necessary. 

10. Optimum Mach number 
It is shown in Appendix 1 that the average power per unit length of duct is a 

function of both Mach number and load conditions, equation (44). For any given 
value of K ,  this function can be differentiated logarithmically to obtain the 

FIGURE 5. Variation of optimum Mach number (for minimum length) with fraction 
of power extracted, for various load conditions. y = 1.25. 

condition for optimum Mach number giving maximum average power per unit 
length as in (47) (see Appendix 1). For 7 = 0 the optimum is of course that given 
by (40) regardless of the value of K .  For generators of non-zero length the opti- 
mum value of X lies above 1/2h. The variation in optimum Mach number ex- 
pressed as an increase over the value given by (41) is shown in figure 5 and it can 
be seen that the total variation is only a few percent for the range of interest. 
The optimum Mach number is 0.78 when K = 1 and 0.85 when K = 0. Thus, 
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regardless of the optimum value of K ,  the optimum Mach number for minimum 
duct length can be roughly established to within +. 5 % say, provided that the 
ratio y of the specific heats is known. For a more accurate determination of the 
optimum Mach number, the appropriate value of K must be specified by consider- 
ing compressor size and power, duct cost, etc., and then figure 5 may be used. 

In  a similar way it is shown in Appendix 2 that the value of X giving maximum 
power per unit volume is l/p for K = 1 and l/(p - 1) for K = 0,  where 

which for typical values (y  = 1-25) gives Mach numbers in the range 0.87 for 
K = 1 to 0.92 for K = 0,  a variation of only f 2Q yo. The Mach number can there- 
fore be even more closely specified in this case, while the total variation in Mach 
number between this and the minimum-length case is still only & 8 %. 

1 1. Conclusions 
When a conducting gas moves through a magnetic field the rate at which elec- 

trical energy can be extracted (per unit length or per unit volume) is expressible 
in terms of the Mach number of the flow and the extraction efficiency K (the ratio 
of the electrical power output to the total power generated). The output can there- 
fore be optimized for minimum length or minimum volume. 

At any point along the flow maximum electrical output is obtained with an 
optimum Mach number which is the same a t  all points along the flow, if a power- 
law approximation is usedfor the variationof conductivity with pressure and tem- 
perature and y is assumed constant. It might therefore seem that the optimum 
design for minimum size of an electrical generator working on these principles 
should be for a constant Mach number, which would be just below sonic in a 
practical case. 

The constant-Mach-number generator has therefore been investigated and 
it is found that while the maximum specific power output occurs locally under 
matched load conditions ( K  = i), the maximum average specific power output 
occurs for conditions closer to short circuit ( K  < 3). It is of academic interest to 
note that for moderate outputs the maximum average specific power occurs 
theoretically at short circuit ( K  = 0). Against this, the minimum compressor 
requirements are found under open circuit conditions ( K  = 1) and so a compro- 
mise must be reached for optimum generator design which will probably give 
K N 2. The optimum Mach number is limited in range and can therefore be 
specified to within a few percent regardless of the above considerations concerning 
the value of K .  For a y of 1.25, Mop, = 0.85 to within 8 %. Curves are presented 
which will enable Mop, to be determined with greater precision when the optimum 
value of K has been selected. 

Appendix 1. Power per unit length 
From (28) and (29), 

x = zo[l - (1  - y)"]/K( 1 - K )  w. 

By substituting (31) and (36) into (22) it  can be seen that 

2 0  = [%(2/CP To,)& B2/P,l-1 (~O,/TlP [I  - T,/To,I-B. 

(42) 

(43) 
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Now the overall average power per unit length for any given output 7Q1 is 7Q1/x, 
and by (42) and (43) 

where 

is independent of K and X and 

P = Q i [ ~ o ( 2 / c p  Toi)' B2/p01 

144) 

(45) 

f ( X , K )  = [ X * / ( l + X ) h + ~ ] K ( 1 - K ) ~ ~ [ l - ( ( 1 - 7 ) W ] .  (46) 

To find the optimum Mach number for any specified value of K ,  (46) may be 
differentiated logarithmically, thus 

0 = [ ( 1 / 2 X )  - @ + $ ) / ( I  + X I ]  + [ I +  ( 1  -7)"ln ( 1  - ~ ) ~ / ( l -  ( 1  -7)")l 

x ( l / w )  E(x+ l )Yl(Y-  111 [(1/K) - 11. 147) 
To first order in 7, this gives 

x E (l l .24 [ 1  + T W ' ( 1 +  1 / 2 4  ( 1 / 2 4 ] ,  

where U' = dU/dX = ( 1  + Z )  [ ~ / ( y  - l ) ]  [( 1 - K ) / K ] ,  

but for small K or large 7 the optimum values of X must be obtained numerically. 
The results are shown in figure 5. 

It is of interest to find the load conditions for minimum length, although these 
may not correspond to an overall optimum when account is taken of compressor 
requirements. Now iff(X, K )  has a local maximum with respect to both X and K 
it  may be found by differentiating logarithmically with respect to these variables, 
thus 

0 = [ ( l / K )  - l / ( l -  K ) ] -  [1+ ( 1  -7)"ln ( 1  -7)"/(l-  ( 1  -7f")I 

+ ( l / U )  [ ( Z f l ) Y / ( Y -  111 [(1+X)lK21. (48) 

Eliminating 71 between (47) and (48), these reductions reduce after a little manipu- 
lation to the simple relation X = [4K + 2(h- 1)I-l between the optimum values 
of X and K.  Using this relation to determine 7 it is found that a local maximum 
exists for values of 7 up to 5 yo as shown in figure 5 for typical values of the para- 
meters. For sufficiently low values of 7 

f ( X ,  K )  E! [x /q  1 + X)A++] K (  1 - I< ) .  (49) 

However, it  may be possible to find a region away from the local maximum 
where f is in fact larger than the local maximum value. Thus for any non-zero 
7,1 the limiting value as K vanishes is 

f(X7 0) = [ X W  +X)n-417(l + z ) y / ( y -  11, (50)  

7 > K ( l - K ) ( y - l ) / r ( l + z ) ( l + X ) .  (51)  

and this value will be greater than the value off(X, K )  given by (49) provided that 

Choosing typical values, it  is found that for overall efficiencies greater than about 
3 yo it  is theoretically better to work with a zero value of K ,  i.e. at  short-circuit 
conditions. The optimum value of X in that case is 

and 
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For typical values of the parameters this gives the optimum Mach number of 
0.85 as shown in figure 5. 

This result is rather surprising since a zero value of K corresponds to a zero 
value of output per unit volume for maximum average power per unit length. 
The paradox is resolved by observing that when K = 0 equation (28) shows that 
for any length less than x2 no power is extracted (7 = 0), while for any fraction 
7 > 0, x = x2, so that all the power is extracted in an infinitesimal length at  
the end of the duct x2. The power output per unit volume is zero at all positions 
up to x2 where it becomes infinite like K exp ( -  const./K). However, the total 
power there is finite (equal to Q1) so that although the cross-sectional area be- 
comes infinite like exp(const./K) the volume there does not, but is of order 
K-lexp (const./K) to keep the total power finite. The power per unit length is 
zero a t  all points except x2 where it is infinite of order K-l exp (const./K) in such 
a way that the power extracted over an infinitesimal length a t  x2 is finite (equal 
again to Q1). For such rapid duct expansions the quasi-one-dimensional approxi- 
mation will no longer be valid and the assumed variation of conductivity will 
not apply over such large ranges of pressures, so that this short-circuit condition 
cannot be achieved in practice. However, it  will obviously be best for minimum 
length to work with the smallest value of K that can be achieved. In  this respect 
the situation is the converse of the normal generator or battery case, in which the 
internal resistance is made as small as possible compared with the load (i.e. 
K N l ) ,  and it is best to work as near open circuit as possible. It may be noted 
that K = 0 is also found to be optimum condition for higher efficiencies in the 
constant temperature generator (Swift-Hook 196 1).  

Appendix 2. Power per unit volume 
The above optimization procedure for power output was carried out with 

respect to length. A similar procedure may be carried out with respect to any 
other parameter such as volume. The analysis is analogous to that already carried 
out in equations (31)  to (67).  Thus, the power per unit volume at any point dong 
the duct is 

and as already pointed out this is optimized locally by choosing the load so that 
K is equal to one-half, as before. Using (32)  to (35) with (38)  

(31a)  J E  = C T W ~ B ~ K ( ~  - K ) ,  

J E  N x/( 1 + X)P+l, (39a)  

where lu = Y - V / ( Y -  1).  (37a)  

Xopt = (40a)  

giving No,, = [ 2 / W  - 1)  - 4 - 4 .  (41a)  

The optimum value of X is 

For typical values of the parameters the optimum Mach number is 0-87 and its 
variation with y is shown in figure 4. From (21)  we have that 
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where the total volume V is /Adz. By (17) and (25 ) ,  
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- - 

by (7),  where 

Hence the overall average power per unit volume is 

S&l/V = P,g(X, K ) ,  
where Pv = ~ C , T ~ , O - ~ B ~  
independent of X and K and 

g ( X ,  K )  = [ X i (  1 + X)/L+1] K (  1 - K )  & / [ l -  (1 - 7) f ] .  

g ( X ,  K )  2: ( X / (  1 + X)fl+l}K( 1 - K ) ,  

(46a) 

149a) 

For sufficiently small values of 7, 

but as before it may be possible to find a region away from the local maximum 
where g is in fact larger than the local maximum value given where K = 9, 
X = 1/p. Thus for any non-zero 7 the limiting value of g ( X ,  K )  as K vanishes is 

g(X7 0) = [X/ ( l+  X1.1 7ZYl(Y- I), (50a) 

and this value will be greater than the value of g(X ,  K )  given by (49a) provided 

7 > K ( l - K ) ( y - l ) / y z ( l + K ) .  151a) 
that 

Choosing typical values as before it is found that for overall efficiencies greater 
than about 9 % it  is theoretically better to work with a zero value of I<, i.e. a t  
short circuit conditions, for maximum power per unit volume. The optimum 
value of X in that case is 

and 

For typical values of the parameters this gives the optimum Mach number of 0.92 
and the variation with y is shown in figure 4. 

Xopt = 1/(P- 1) ( 5 2 4  

(53a)  Mop, = P/{(y - 1) (7 - 1 )  - zy)1-*. 

The work was carried out at the Central Electricity Research Laboratories 
and is published by permission of the Central Electricity Generating Board. 

REFERENCES 

COE, W. B. & EISEN, C. L. 1960 Elec. Engng, 79, 997. 
HUTH, J. H. 1961 Energy Conversion for Space Power (ed. N. W. Snyder). New York: 

NEURINGER, J. 1960 J. Fluid Mech. 7, 287. 
RALPH, J. 1962 Advances in Magnetohydrodynamics (ed. McGrath & Siddall). Oxford : 

SUTTON, G. W. 1959 (3. E. Rep. R59SD 432. 
SWIFT-HOOK, D. T. 1962 Advances in Magnetohydrodynamics (ed. McGrath & Siddall). 

WAY, S.  1960 Westinghouse Sci. Paper 6-40509-2P1. 

Academic Press. 

Pergamon Press. 

Oxford : Pergamon Press. 


